

VERRUCOSANE DITERPENE FROM THE LIVERWORT *PLAGIOCHILA STEPHENSONIANA*

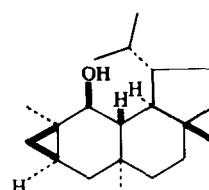
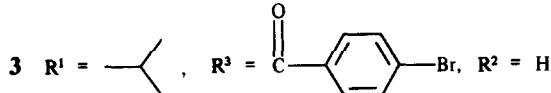
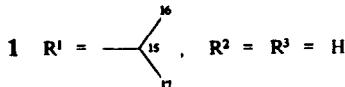
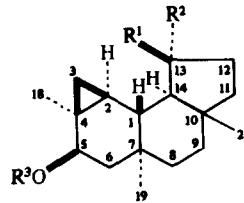
YOSHIYASU FUKUYAMA, TORU MASUYA, MOTOORI TORI, MASARU KIDO,* MARIKO WAKAMATSU and YOSHINORI ASAKAWA†

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan; *Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd, Kawauchi-cho, Tokushima 771-01, Japan

(Revised received 21 October 1987)

Key Word Index—*Plagiochila stephensoniana*; Jungermanniales; Hepaticae; (+)-13-*epi*-neoverrucosan-5 β -ol; verrucosane-type diterpene; X-ray analysis.

Abstract—From the non-pungent liverwort *Plagiochila stephensoniana*, a new verrucosane-type diterpenoid has been isolated along with 3-methoxy-4'-hydroxybibenzyl and the sesquiterpenoid spathulenol. The structure of the new diterpene, (+)-13-*epi*-neoverrucosan-5 β -ol, as elucidated by extensive 2D NMR spectroscopy was confirmed and its absolute configuration established by X-ray analysis of the *p*-bromobenzoyl derivative.





INTRODUCTION

Although a number of verrucosane-type diterpenoids with a novel fused 3,6,6,5-tetracyclic carbon skeleton are known, they occur only in the liverworts *Mylia verrucosa* [1-4], *Gyrothyra underwoodiana* [5] and *Scapania bolanderi* [6]. In the course of our continuing search for biologically active substances [7, 8] in *Plagiochila* species, we reinvestigated the chemical constituents of non-pungent *Plagiochila stephensoniana* [9] indigenous to New Zealand, and succeeded in isolating a new verrucosane diterpene (1) along with the previously known 3-methoxy-4'-hydroxybibenzyl (5) [9] and spathulenol (6) [8]. In this paper we wish to report on the structure including the absolute configuration of the new diterpene as established by 2D NMR methods and X-ray analysis of its *p*-bromobenzoyl derivative.

RESULTS AND DISCUSSION

A combination of column chromatography on silica gel and Sephadex LH-20 of an ether extract of *P. stephensoniana* led to the isolation of a new diterpene (1), along with the known 3-methoxy-4'-hydroxybibenzyl (5) [9] and spathulenol (6) [8].

Compound 1 had the molecular formula $C_{20}H_{34}O$ (M^+ 290.2602). Its IR, 1H and ^{13}C NMR spectra indicated the presence of one secondary hydroxyl group (3600 cm^{-1} ; δ_C 71.37), three tertiary methyl groups [δ_H 0.80, 0.83 and 1.21 (each *s*)], an isopropyl group [1378 and 1385 cm^{-1} ; δ_H 0.86 and 0.93 (each *d*, $J=6.6\text{ Hz}$)] and a cyclopropane ring (3060 cm^{-1} ; δ_H 0.31 and 0.61), but did not show the presence of any carbonyl and unsaturated groups. This suggested that 1 was a saturated tetracyclic diterpene. The 2D 1H - 1H COSY spectrum was examined to clarify the connectivity of each proton

4

in 1. The signals at δ_H 0.31 and 0.61 assignable to the methylene protons in the cyclopropane ring, showed coupling with the signals at δ_H 0.80 (*ddd*, $J=8.0, 4.8, 4.5\text{ Hz}$), which were further coupled with the lower field signal at δ_H 1.24 (*dd*, $J=13.2, 4.5\text{ Hz}$). One (δ_H 0.31) of the

†Author to whom correspondence should be addressed.

methylene protons on the cyclopropane ring showed long-range coupling with the methyl signal at δ_H 1.21 suggesting the methyl group was located at the carbon (C-4) next to the cyclopropane methylene group (C-3). The isopropyl methyl signals had cross peaks with the two-proton multiplet signals which appeared at δ_H 2.11, which were found to be connected with different carbons (δ_C 44.91 and 29.76) from the 1H - ^{13}C COSY spectrum. One of them, assigned to H-13, revealed a coupling to a double doublet signal at δ_H 1.61 (dd , $J=13.2, 9.5$ Hz), which was further coupled with the signal at δ_H 1.24. These results led to a successive connectivity of $CH_2(3)-CH(2)-CH(1)-CH(14)-CH(13)-CH(15)-(Me)_2$, and also indicated a *trans*-dialixal relationship between H-1 and H-14 (large J value of 13 Hz). In addition, the carbinal proton at δ_H 4.03 (dd , $J=10.7, 7.3$ Hz) was coupled with the two geminal protons at δ_H 0.71 (dd , $J=12.5, 10.7$ Hz) and 1.70 (dd , $J=12.5, 7.3$ Hz), one ($\delta 0.71$) of which showed long-range coupling with the methyl signal at δ_H 0.80, and thereby a partial structure $HCOH(5)-CH_2(6)-C(7)-Me$ was suggested. It was further possible to correlate four methylene groups as $\square-CH_2(\delta 35.25)-CH_2(\delta 36.63)-\square$ and $\square-CH_2(\delta 40.90)-CH_2(\delta 25.34)$, by careful examination of both the ^{13}C - 1H COSY and the 1H - 1H COSY spectra, although these protons were only slightly resolved to each other. Moreover, examination of the ^{13}C - 1H long-range COSY spectrum of **1** resulted in complete assignments of equivocal carbon signals (Table 1), and substantiated the con-

nnectivities of the partial structures discussed above for **1**. These evidences led to the conclusion that the plain structure for **1** corresponded to neoverrucosan-5-ol already reported by Matsuo *et al* [9]. The IR and 1H NMR data for **1**, however, were not in agreement with those of $(-)$ -neoverrucosan-5 β -ol (**2**), and also its specific rotation had a positive sign opposite to that of **2**. These inconsistencies indicated that the structure of **1** was in part stereochemically different from that of **2**.

In order to establish the stereostructure including the absolute configuration of **1**, X-ray measurement of the *p*-bromobenzoate (**3**) was carried out. The ORTEP drawing of **3** is shown in Fig. 1 and the configuration of the isopropyl group was established to be β epimeric at C-13 in **2**. The absolute chemistry of the molecule was determined by Bijovet's anomalous dispersion method based on the observed and calculated structure factors of 18 Friedel pairs. The absolute configuration of **3**, which is shown in Fig. 1, matches that of neoverrucosan-5 β -ol (**2**) [10].

All the previously known verrucosane (**4**) and neoverrucosane diterpenoids contain an α -isopropyl group at C-13 and this type of diterpene bearing a β -oriented one has not been recorded before the isolation of $(+)$ -13-*epi*-neoverrucosan-5 β -ol (**1**) described in this paper [8]. From the biosynthetic point of view, however, the presence of epimeric congener on a terminal isopropyl group is not rare in natural products since its stereochemistry relies upon the conformation adopted by GG pp on cyclization [11, 12]. *P. stephensoniana* is chemically a very isolated species among the Plagiochilaceae since it produces a large amount of bibenzyl derivative [9], and the present *epi*-neoverrucosane diterpenoid has not been found in any *Plagiochila* species so far examined [8, 13, 14].

Table 1. ^{13}C NMR data for compounds **1** and **3** (100.16 MHz for **1**, 22.25 MHz for **3**, $CDCl_3$, TMS as int. standard)

C	1	3
1	45.78	45.8
2	27.47	27.3
3	20.22	20.1
4	23.32	21.9
5	71.37	76.4
6	47.03	43.1
7	37.52	37.7
8	35.25	35.2
9	36.63	36.6
10	42.45	42.4
11	40.90	40.9
12	25.34	25.4
13	29.76	29.8
14	50.55	50.6
15	44.91	45.0
16	21.29*	21.3†
17	23.87*	23.9†
18	25.62	25.7
19	17.06	17.0
20	20.33	20.3
1'	165.9	
2'	127.7	
3'	131.6	
4'	131.1	
5'	146.3	

*† May be interchangeable.

EXPERIMENTAL

Mps: uncorr, 1H NMR (400 and 90 MHz) and ^{13}C NMR (100.16 and 22.25 MHz); $CDCl_3$, TMS as int. standard; CC: silica gel (Merck, 70–230 mesh and Wakogel C-300); TLC: precoated silica gel plates F_{254} (Merck, 0.25 mm). Spots were visualized by 30% H_2SO_4 followed by heating. The X-ray measurement was carried out by a Syntex R3 four-circle diffractometer.

Plant material. The liverwort, *Plagiochila stephensoniana* Mitt. was collected in New Zealand in November 1986 and identified by Dr E. O. Campbell and Y. A. A voucher specimen has been deposited at the Herbarium of the Institute of Pharmacognosy, Tokushima Bunri University.

Extraction and isolation. Air-dried and powdered whole plants (202.06 g) were extracted at room temp. for two months. The resultant Et_2O extract was evapd *in vacuo* to give a crude extract (3.43 g), which was separated into seven fractions by CC on silica gel: fr. 1 (438 mg) (*n*-hexane, 100%); fr. 2 (87 mg) ($EtOAc-n$ -hexane, 1:19); fr. 3 (634 mg) ($EtOAc-n$ -hexane, 1:9); fr. 4 (70 mg) ($EtOAc-n$ -hexane, 1:4); fr. 5 (1.5 g) ($EtOAc-n$ -hexane, 3:7); fr. 6 (199 mg) ($EtOAc-n$ -hexane, 1:1); fr. 7 (63 mg) ($EtOAc$, 100%).

Spathulenol (**6**) (17 mg) was obtained from fr. 4 by CC on silica gel ($CHCl_3-EtOAc$, 19:1). Fr. 5 was further separated into four fractions by Sephadex LH-20 ($CHCl_3-MeOH$, 1:1). The fourth fraction gave 3-methoxy-4'-hydroxybibenzyl (**5**) (1.10 g), and the second fraction (175 mg) was purified by repeated chromatography on silica gel ($C_6H_6-EtOAc$, 19:1 \rightarrow $EtOAc$, 100%, and then $CHCl_3-EtOAc$, 19:1) to afford 13-*epi*-neoverrucosan-5 β -ol (**1**) (55 mg) as a colourless prism (from *n*-hexane), mp 151–153.5°; $[\alpha]_D$ 45.5 (c 0.8; $CHCl_3$); MS *m/z* (rel.

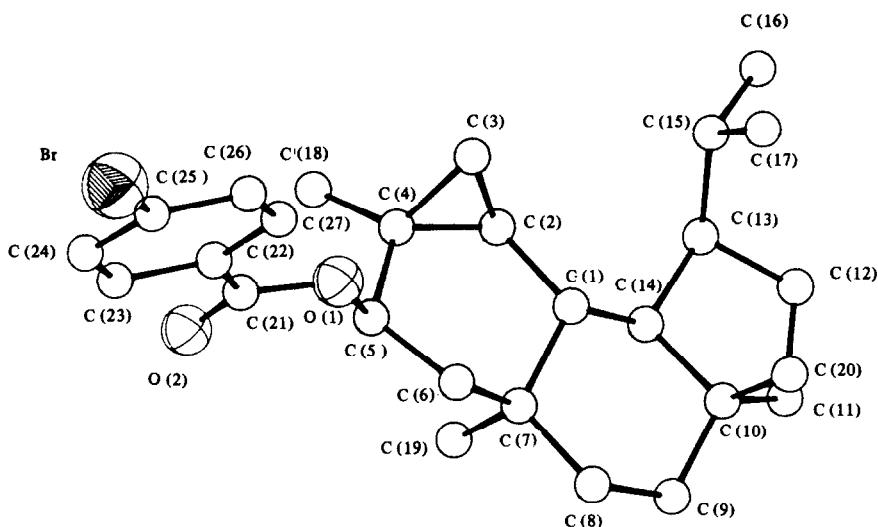


Fig. 1. ORTEP drawing of the molecular structure of compound 3.

int.): 290.2602 $[M]^+$ (27) (calc. 290.2610 for $C_{20}H_{34}O$), 275 (34) $[M-14]^+$, 257 (13) $[M-15-18]^+$, 247 (39) $[M-43]^+$, 229 (38), 161 (46); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} : 3600 (OH), 3060 (cyclopropane ring), 1378, 1385; ^1H NMR (400 MHz, CDCl_3): δ 0.31 (1H, dd, $J = 4.8, 4.6$ Hz, H-3 β), 0.61 (1H, dd, $J = 8.0, 4.6$ Hz, H-3 α), 0.71 (1H, dd, $J = 12.5, 10.7$ Hz, H-6 β), 0.80 (3H, s, Me-19), 0.80 (1H, ddd, $J = 8.0, 4.8, 4.5$ Hz, H-2), 0.83 (3H, s, Me-20), 0.86 and 0.93 (each 3H, d, $J = 6.6$ Hz, Me-16 and -17), 1.21 (3H, s, Me-18), 1.24 (1H, dd, $J = 13.2, 4.5$ Hz, H-1), 1.61 (1H, dd, $J = 13.2, 9.5$ Hz, H-14), 1.70 (1H, dd, $J = 12.5, 7.3$ Hz, H-6 α), 2.11 (2H, m, H-13 and -15), 4.03 (1H, dd, $J = 10.7, 7.3$ Hz, H-5); ^{13}C NMR: see Table 1. *p*-Bromobenzoylation of 1. To a soln of 1 (20.1 mg) in $\text{C}_5\text{H}_5\text{N}$ (3 ml) was added *p*-bromobenzoyl chloride (30 mg) in one portion, and then the reaction mixture was allowed to stand at room temp. for 10 hr. Usual work-up afforded the *p*-bromobenzoylate 3 (23 mg) as a crystal; mp 124–125°; $[\alpha]_D$ 47.2 (CHCl_3 ; c 1.15); ^1H NMR (90 MHz, CDCl_3): δ 0.84 (3H, s), 0.81 and 0.95 (each 3H, d, $J = 6.3$ Hz), 0.93 (3H, s), 1.19 (3H, s), 5.53 (1H, dd, $J = 10.3, 7.5$ Hz), 7.56 (2H, d, $J = 8.6$ Hz), 7.92 (2H, d, $J = 8.6$ Hz); ^{13}C NMR: see Table 1.

X-ray analysis of 3. A crystal of 3 was grown in MeOH under slow evapn at room temp. Crystal data: $C_{27}H_{37}O_2Br$, monoclinic, $P2_1$, $a = 6.311(2)$, $b = 19.543(9)$, $c = 9.970(4)$, $\alpha = 97.53(3)^\circ$, $D_x = 1.25 \text{ g/cm}^3$ and μ (MoK α) = 18.0 cm^{-1} . The cell dimensions and intensities were measured on a four-circle diffractometer with ω -scan mode for 2θ less than 45° . A total of 1653 independent reflections were collected, among which 1462 reflections [$I > 1.96\sigma(I)$] were stored as observed. The structure was solved by the heavy atom method. All the hydrogen atoms except for 7 atoms connected with methylene carbons were located in a difference map computed after block diagonal least-squares anisotropic refinement of non-hydrogen atoms. The final refinement cycle gave $R = 0.042$. The absolute configuration of the molecule was determined by Bijvoet's anomalous-dispersion method based on the observed and calculated structure factors of 18 Friedel pairs. The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Center, University Chemical Laboratory.

Acknowledgements—We thank Drs E. O. Campbell (Massey University) and L. P. Porter (DSIR, New Zealand), for their collection and identification of the species.

REFERENCES

1. Matsuo, A., Nozaki, H., Nakayama, M., Hayashi, S. and Takaoka, D. (1978) *J. Chem. Soc. Chem. Comm.* 198.
2. Nozaki, H., Matsuo, A., Kushi, Y., Nakayama, M., Hayashi, S., Takaoka, D. and Kamijo, N. (1980) *J. Chem. Soc. Perkin Trans. II* 763.
3. Takaoka, D. (1979) *J. Chem. Soc. Perkin Trans. II* 2711.
4. Hayashi, S., Matsuo, A., Nozaki, H., Nakayama, M., Takaoka, D. and Hiroi, M. (1978) *Chem. Letters* 953.
5. Kubo, I., Matsumoto, A., Hirotsu, K., Naoki, H. and Wood, F. W. (1984) *J. Org. Chem.* **49**, 4644.
6. Matsuo, A., Atsumi, K. and Nakayama, M. (1983) *The 27th Symposium of the Chemistry of Terpenes, Essential Oils and Aromatics of Japan*, Symposium Papers, p. 306.
7. Asakawa, Y. (1984) *Rev. Latinam. Quim.* **14**, 109.
8. Asakawa, Y. (1982) *Progress in the Chemistry of Organic Natural Products* (Herz, W., Grisebach, H. and Kirby, G. W., eds) vol. **42**, p. 1. Springer, New York.
9. Asakawa, Y. and Campbell, E. O. (1982) *Phytochemistry* **21**, 2663.
10. Matsuo, A., Nozaki, H., Shigemori, M., Nakayama, M. and Hayashi, S. (1977) *J. Chem. Soc. Chem. Comm.* 822.
11. Manitto, P. (1981) in *Biosynthesis of Natural Products*, p. 284. Wiley, New York.
12. Devon, T. K. and Scott, A. I. (1972) in *Handbook of Naturally Occurring Compounds* Vol. 2. Academic Press, New York.
13. Asakawa, Y. and Inoue, H. (1984) in *Studies on Cryptogams in Southern Chile* (Inoue, H. ed.), p. 117. Kenseisha, Tokyo.
14. Asakawa, Y. and Inoue, H. (1987) in *Studies on Cryptogams in Southern Peru* (Inoue, H. ed.), p. 107. Tokai University Press, Tokyo.